profile pic
⌘ '
raccourcis clavier

See also slides, optimization

Linearization around first order Taylor series expansions

Usage:

  • Resource allocation
  • Project selection
  • Scheduling and Capital budgeting
  • Energy network optimization

Criteria for optimization models

  • comprised of only continuous variables
  • linear objective function
  • either only linear constraints or inequality constraints
minxϕ=cTx Objective function s.t Constraints Ahx=bh Equality constraints Agxbg0 Inequality constraints xlbxxub Variable Bounds\begin{align*} \min_{x} \phi = c^\mathbf{T} \mathcal{x} & &\leftarrow &\space \text{Objective function} \\\ \text{s.t} & &\leftarrow &\space \text{Constraints} \\\ A_h \mathcal{x} = \mathcal{b}_h & &\leftarrow &\space \text{Equality constraints} \\\ A_g \mathcal{x} \leq \mathcal{b}g \leq 0 & &\leftarrow &\space \text{Inequality constraints} \\\ \mathcal{x}_{lb} \leq \mathcal{x} \leq \mathcal{x}_{ub} & &\leftarrow &\space \text{Variable Bounds} \end{align*}

where:

  • xjth\mathcal{x} \rightarrow j^{\text{th}}: decision variables
  • cjthc \rightarrow j^{\text{th}}: cost coefficients of the jthj^{\text{th}} decision variable
  • ai,ja_{i, j}: constraint coefficient for variable jj in constraint ii
  • biRHSb_i \rightarrow \text{RHS}: coefficient for constraint ii
  • (Akk={h,g})(A_k \mid k = \lbrace \mathcal{h}, \mathcal{g} \rbrace): matrix of size [mk×n]\lbrack m_k \times n \rbrack

Sensitivity reports

Decision variables

Reduced cost: the amount of objective function will change if variable bounds are tighten

Allowable increase/decrease: how much objective coefficient must change before optimal solution changes.

100% Rule

If there are simultaneous changes to objective coefficients, and each coefficient(Proposed changeAllowable change)100%\sum_{\text{each coefficient}}(\frac{\text{Proposed change}}{\text{Allowable change}}) \leq 100 \% then the optimal solution would not change.

Constraints

Final value: the value of constraints at the optimal solution

Shadow price: of a constraint is the marginal improvement of the objective function value if the RHS is increased by 1 unit.

Allowable increase/decrease: how much the constraint can change before the shadow prices changes.

See lemon_orange.py