State space representation
See also sides
time-domain technique
x˙ y=Ax+Bu=Cx+Du
- linearly independent
- State vector: x=[x1,x2,…,xn]T
transfer function to a state space representation
Given
G(s)=sn+∑i=1n−1aisi+a0∑i=1n−1bisi+b0=U(s)Y(s)
We get controller canonical state space form:
x˙(t) y(t)=0 0 ⋮ 0 0 −a010⋮00−a101⋮00−a2⋯⋯⋱⋯⋯⋯00⋮10−an−200⋮01−an−1x(t)+0 0 ⋮ 0 0 1u(t)=[b0b1⋯bn−2bn−1]x(t).
We get observer canonical state space form:
x˙(t)y(t)=−an−1−an−2⋮−a2−a1−a010⋮00001⋮000⋯⋯⋱⋯⋯⋯00⋮10000⋮010x(t)+bn−1bn−2⋮b2b1b0u(t)=[10⋯00]x(t).