profile pic
⌘ '
raccourcis clavier

reference: slides, and awesome calculator

excerpt from real-time system slides

final value theorem

If a system is stable and has a final constant value, then one can find steady state value without solving for system’s response. Formally:

limtx(t)=lims0sX(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)

sketching root locus

RuleDescription
Number of BranchesNumber of closed-loop poles, or the number of finite open-loop poles = number of finite open-loop zeros
SymmetryAbout the real axis
Start and End PointsStarts at poles of open loop transfer function and ends at finite and infinite open loop zeros
Behaviour at \inftyReal axis: σa=Σfinite polesΣfinite zeros# finite poles - # finite zeros\sigma_a = \frac{\Sigma{\text{finite poles}} - \Sigma{\text{finite zeros}}}{\text{\# finite poles - \# finite zeros}}
Angle: θa=(2k+1)π# finite poles - # finite zeros\theta_a = \frac{(2k+1)\pi}{\text{\# finite poles - \# finite zeros}} where k=0,±1,±2,±3k = 0, \pm 1, \pm 2, \pm 3
Breakaway/Break-in PointsLocated at roots where d[G(s)H(s)]ds=0\frac{d[G(s)H(s)]}{ds} = 0